

Kaushik Kumar Pradhan

Department of Earth, Environmental, and Resource Sciences
University of Texas at El Paso (UTEP)
Email: kpradhan@miners.utep.edu
Phone: +1 (915) 240-3758
Web: [Google Scholar](#) | [ORCID](#) | [LinkedIn](#) | [GitHub](#)

Selected Research Highlights

- Developed a joint Bayesian inversion combining H/V spectral ratios and surface wave dispersion to delineate shallow magmatic structure beneath Valles Caldera.
- Applied coda wave sensitivity kernels and decorrelation analysis to monitor hydraulic fractures formed during EGS stimulation.
- Used 3D elastic radiative transfer to quantify intrinsic vs scattering attenuation in geothermal reservoirs.
- Built DAS workflows for Thwaites Glacier datasets to retrieve 1D velocity from active source data.

Education

Jan 2022 – Present	PhD in Geological Sciences , University of Texas at El Paso (UTEP) Advisor: Dr. Julien Chaput Expected Graduation: Summer 2026 <i>Passive seismic imaging of the Valles Caldera magmatic system; scattering based characterization of geothermal fracture networks.</i>
Aug 2016 – 2021	BS-MS Dual Degree in Geological Sciences , Indian Institute of Science Education and Research (IISER) Kolkata, India Advisor: Prof. Supriyo Mitra <i>Lg attenuation structure of the Jammu & Kashmir Himalaya.</i>

Technical and Computational Skills

Programming	Python (ObsPy, NumPy/SciPy, xarray), MATLAB, Bash, Tensorflow
Seismic Methods	Ambient noise interferometry, H/V and autocorrelation, coda-wave analysis, MCMC inversion, attenuation modeling, dispersion analysis
Modeling	Radiative transfer modeling, MCMC inversion, DAS data processing
HPC	Linux clusters, parallel workflows, Git/GitHub, workflow automation
Mapping	GMT, PyGMT, ArcGIS
Documentation	L ^A T _E X, Jupyter Notebooks

Awards & Honors

2023–24	NSF geothermal research internships at LBNL (2024) and PNNL (2023).
2022–23	Vernon G. & Joy Hunt Endowed Scholarship in Geology (2022, 2023).
2023	Travel Support: DAS RCN Workshop; GAGE/SAGE Community Workshop.
2022	Outstanding Graduate Poster Presentation (2nd Place) in the department.
2021	AGU Fall Meeting Virtual Student Travel Grant.
2021	CSIR-NET Research Fellowship (India) for PhD.

Journal Publications

Peer-reviewed

- Agnew, R.S., Pearce, E., Karplus, M., Ranganathan, M., Hoffman, A.O., Hunt, M., Pretorius, A., Shanly, S.E., Beres, M., **Pradhan, K.K.**, and Seldon, Y. (2025). *Active and Passive Seismic Surveys over the*

Grounding Zone of Eastwind Glacier, Antarctica. Seismological Research Letters. [Link](#)

2. **Pradhan, K.K.**, Sprinkle, P., Chaput, J., Knox, H., and EGS Collab Team (2025). *Characterizing hydraulic fracture formation during enhanced geothermal system experiments using coda waves. The Leading Edge*, 44(3), 163–169. [Link](#)

In Preparation

1. **Pradhan, K.K.** et al., Imaging the Valles Caldera using H/V, autocorrelation, and noise based dispersion.
2. **Pradhan, K.K.** et al., Velocity structure beneath Thwaites Glacier from DAS data.
3. **Pradhan, K.K.** et al., Fracture characterization at the EGS Collab site using active seismic data.
4. **Pradhan, K.K.** et al., Intrinsic vs scattering attenuation at Cape Modern geothermal field.
5. **Pradhan, K.K.** et al., Characterizing Lg attenuation structure of Jammu & Kashmir Himalaya.

Conference Presentations

1. **Pradhan, K.**, Chaput, J., Wilgus, J., & Schmandt, B. (2025). Imaging the Valles Caldera Using H/V and Autocorrelation. IASPEI–IAGA Joint Assembly, Lisbon.
2. **Pradhan, K.**, Sprinkle, P., Chaput, J., Knox, H., et al. (2024). Characterizing Hydraulic Fractures Using Synthetic Seismic Data. IMAGE Conference, Houston.
3. **Pradhan, K.**, Sprinkle, D.P., Knox, H.A., Chaput, J., et al. (2023). Real-time Monitoring of Hydraulic Fractures Using Coda Waves. AGU Fall Meeting, San Francisco.
4. **Pradhan, K.**, Chaput, J.A., Schmandt, B. (2023). Passive Imaging Beneath Valles Caldera. SSA Annual Meeting, Puerto Rico.
5. **Pradhan, K.**, Mitra, S. (2021). Lg Attenuation in the NW Himalaya. AGU Fall Meeting, Virtual.

Professional Experience

2022–Present	PhD Research Associate, University of Texas at El Paso Developed Bayesian H/V–dispersion inversion; implemented coda-wave scattering analyses; explored ML-based unsupervised classification literature.
Summer 2024	Student Affiliate, Lawrence Berkeley National Laboratory Applied 3D radiative transfer models and quantified intrinsic vs scattering attenuation in Cape Modern geothermal field.
Summer 2023	Geothermal Intern, Pacific Northwest National Laboratory Applied coda wave interferometry to study fracture evolution during EGS Collab stimulation; created Python scripts to analyze the data.
2022–2025	Teaching Assistant, University of Texas at El Paso Led lab instruction for Principles of Earth Sciences and Geology for Engineers.
2019–2021	Project Fellow, Indian Institute of Science Education and Research Kolkata Contributed to crustal attenuation and lithospheric deformation research.

Fieldwork Experience

2022	San Francisco Volcanic Field, AZ — volcanic field mapping and planetary analog field studies (NASA/LPI).
2019	Northwest Himalaya — structural and geomorphic mapping across an active orogenic system.
2018	Singhbhum Craton, India — fold geometry and deformation structure mapping in a Precambrian terrane.